Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neurointerv Surg ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527928

RESUMO

BACKGROUND: Mechanical thrombectomy (MT) is the standard of care for patients with a stroke and large vessel occlusion. Clot composition is not routinely assessed in clinical practice as no specific diagnostic value is attributed to it, and MT is performed in a standardized 'non-personalized' approach. Whether different clot compositions are associated with intrinsic likelihoods of recanalization success or treatment outcome is unknown. METHODS: We performed a prospective, non-randomized, single-center study and analyzed the clot composition in 60 consecutive patients with ischemic stroke undergoing MT. Clots were assessed by ex vivo multiparametric MRI at 9.4 T (MR microscopy), cone beam CT, and histopathology. Clot imaging was correlated with preinterventional CT and clinical data. RESULTS: MR microscopy showed red blood cell (RBC)-rich (21.7%), platelet-rich (white,38.3%) or mixed clots (40.0%) as distinct morphological entities, and MR microscopy had high accuracy of 95.4% to differentiate clots. Clot composition could be further stratified on preinterventional non-contrast head CT by quantification of the hyperdense artery sign. During MT, white clots required more passes to achieve final recanalization and were not amenable to contact aspiration compared with mixed and RBC-rich clots (maneuvers: 4.7 vs 3.1 and 1.2 passes, P<0.05 and P<0.001, respectively), whereas RBC-rich clots showed higher probability of first pass recanalization (76.9%) compared with white clots (17.4%). White clots were associated with poorer clinical outcome at discharge and 90 days after MT. CONCLUSION: Our study introduces MR microscopy to show that the hyperdense artery sign or MR relaxometry could guide interventional strategy. This could enable a personalized treatment approach to improve outcome of patients undergoing MT.

3.
Nat Commun ; 14(1): 4533, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500667

RESUMO

Pediatric low-grade gliomas (pLGG) show heterogeneous responses to MAPK inhibitors (MAPKi) in clinical trials. Thus, more complex stratification biomarkers are needed to identify patients likely to benefit from MAPKi therapy. Here, we identify MAPK-related genes enriched in MAPKi-sensitive cell lines using the GDSC dataset and apply them to calculate class-specific MAPKi sensitivity scores (MSSs) via single-sample gene set enrichment analysis. The MSSs discriminate MAPKi-sensitive and non-sensitive cells in the GDSC dataset and significantly correlate with response to MAPKi in an independent PDX dataset. The MSSs discern gliomas with varying MAPK alterations and are higher in pLGG compared to other pediatric CNS tumors. Heterogenous MSSs within pLGGs with the same MAPK alteration identify proportions of potentially sensitive patients. The MEKi MSS predicts treatment response in a small set of pLGG patients treated with trametinib. High MSSs correlate with a higher immune cell infiltration, with high expression in the microglia compartment in single-cell RNA sequencing data, while low MSSs correlate with low immune infiltration and increased neuronal score. The MSSs represent predictive tools for the stratification of pLGG patients and should be prospectively validated in clinical trials. Our data supports a role for microglia in the response to MAPKi.


Assuntos
Glioma , Criança , Humanos , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Linhagem Celular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Biomarcadores
4.
Nat Med ; 29(4): 917-926, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36928815

RESUMO

The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.


Assuntos
Neoplasias Encefálicas , Glioma , Adolescente , Humanos , Criança , Multiômica , Glioma/diagnóstico , Glioma/genética , Neuropatologia , Metilação de DNA/genética , Mutação , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética
5.
Neurooncol Adv ; 5(1): vdad016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968291

RESUMO

Background: Pseudoprogression (PsPD) is a major diagnostic challenge in the follow-up of patients with glioblastoma (GB) after chemoradiotherapy (CRT). Conventional imaging signs and parameters derived from diffusion and perfusion-MRI have yet to prove their reliability in clinical practice for an accurate differential diagnosis. Here, we tested these parameters and combined them with radiomic features (RFs), clinical data, and MGMT promoter methylation status using machine- and deep-learning (DL) models to distinguish PsPD from Progressive disease. Methods: In a single-center analysis, 105 patients with GB who developed a suspected imaging PsPD in the first 7 months after standard CRT were identified retrospectively. Imaging data included standard MRI anatomical sequences, apparent diffusion coefficient (ADC), and normalized relative cerebral blood volume (nrCBV) maps. Median values (ADC, nrCBV) and RFs (all sequences) were calculated from DL-based tumor segmentations. Generalized linear models with LASSO feature-selection and DL models were built integrating clinical data, MGMT methylation status, median ADC and nrCBV values and RFs. Results: A model based on clinical data and MGMT methylation status yielded an areas under the receiver operating characteristic curve (AUC) = 0.69 (95% CI 0.55-0.83) for detecting PsPD, and the addition of median ADC and nrCBV values resulted in a nonsignificant increase in performance (AUC = 0.71, 95% CI 0.57-0.85, P = .416). Combining clinical/MGMT information with RFs derived from ADC, nrCBV, and from all available sequences both resulted in significantly (both P < .005) lower model performances, with AUC = 0.52 (0.38-0.66) and AUC = 0.54 (0.40-0.68), respectively. DL imaging models resulted in AUCs ≤ 0.56. Conclusion: Currently available imaging biomarkers could not reliably differentiate PsPD from true tumor progression in patients with glioblastoma; larger collaborative efforts are needed to build more reliable models.

6.
Cells ; 9(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353083

RESUMO

Fibronectin is a ubiquitous extracellular matrix protein that is produced by many cell types in the bone marrow and distributed throughout it. Cells of the stem cell niche produce the various isoforms of this protein. Fibronectin not only provides the cells a scaffold to bind to, but it also modulates their behavior by binding to receptors on the adjacent hematopoietic stem cells and stromal cells. These receptors, which include integrins such as α4ß1, α9ß1, α4ß7, α5ß1, αvß3, Toll-like receptor-4 (TLR-4), and CD44, are found on the hematopoietic stem cell. Because the knockout of fibronectin is lethal during embryonal development and because fibronectin is produced by almost all cell types in mammals, the study of its role in hematopoiesis is difficult. Nevertheless, strong and direct evidence exists for its stimulation of myelopoiesis and thrombopoiesis using in vivo models. Other reviewed effects can be deduced from the study of fibronectin receptors, which showed their activation modifies the behavior of hematopoietic stem cells. Erythropoiesis was only stimulated under hemolytic stress, and mostly late stages of lymphocytic differentiation were modulated. Because fibronectin is ubiquitously expressed, these interactions in health and disease need to be taken into account whenever any molecule is evaluated in hematopoiesis.


Assuntos
Fibronectinas/fisiologia , Hematopoese , Receptores de Fibronectina/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Eritropoese , Células-Tronco Hematopoéticas/citologia , Hemólise , Humanos , Receptores de Hialuronatos/metabolismo , Integrinas/metabolismo , Camundongos , Mielopoese , Nicho de Células-Tronco , Células-Tronco/citologia , Trombopoese , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...